On the Spectra of Simplicial Rook Graphs
نویسندگان
چکیده
The simplicial rook graph SR(d, n) is the graph whose vertices are the lattice points in the nth dilate of the standard simplex in R, with two vertices adjacent if they differ in exactly two coordinates. We prove that the adjacency and Laplacian matrices of SR(3, n) have integral spectra for every n. We conjecture that SR(d, n) is integral for all d and n, and give a geometric construction of almost all eigenvectors in terms of characteristic vectors of lattice permutohedra. For n ≤ ( d 2 ) , we give an explicit construction of smallest-weight eigenvectors in terms of rook placements on Ferrers diagrams. The number of these eigenvectors appears to satisfy a Mahonian distribution. Resumé. Le graphe des tours simplicials SR(d, n) est le graphe dont les sommets sont les points du réseau dans le nième dilation du simplexe standard dans R; deux sommets sont adjacents s’ils différent dans exactement deux coordonnées. Nous montrons que tous les valeurs propres des matrices d’adjacence et laplacienne de SR(3, n) sont entiers, pour tous les n. Nous conjecturons que les valeurs propres sont entiers pour tous d et n, et donnons une construction géometrique de presque tous les vecteurs propres en termes des vecteurs caractéristiques de permutoèdres treillis. Pour n ≤ ( d 2 ) , nous donnons une construction explicite des vecteurs propres de plus petits poids en termes des placements des tours sur diagrammes de Ferrers. Le nombre de ces vecteurs propres semble satisfaire une distribution Mahonian.
منابع مشابه
Vertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملNotes on simplicial rook graphs
The simplicial rook graph SR(m,n) is the graph of which the vertices are the sequences of nonnegative integers of length m summing to n, where two such sequences are adjacent when they differ in precisely two places. We show that SR(m,n) has integral eigenvalues, and smallest eigenvalue s = max(−n,− ( m 2 ) ), and that this graph has a large part of its spectrum in common with the Johnson graph...
متن کاملSPECTRAL AND COMBINATORIAL PROPERTIES OF FRIENDSHIP GRAPHS, SIMPLICIAL ROOK GRAPHS, AND EXTREMAL EXPANDERS by
Algebraic combinatorics is the area of mathematics that uses the theories and methods of abstract and linear algebra to solve combinatorial problems, or conversely applies combinatorial techniques to solve problems in algebra. In particular, spectral graph theory applies the techniques of linear algebra to study graph theory. Spectral graph theory is the study of the eigenvalues of various matr...
متن کاملShifted Simplicial Complexes Are Laplacian Integral
We show that the combinatorial Laplace operators associated to the boundary maps in a shifted simplicial complex have all integer spectra. We give a simple combinatorial interpretation for the spectra in terms of vertex degree sequences, generalizing a theorem of Merris for graphs. We also conjecture a majorization inequality for the spectra of these Laplace operators in an arbitrary simplicial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphs and Combinatorics
دوره 31 شماره
صفحات -
تاریخ انتشار 2015